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ABSTRACT

Regulation of gene expression influences almost
all biological processes in an organism; sequence-
specific DNA-binding transcription factors are critical
to this control. For most genomes, the repertoire of
transcription factors is only partially known. Hitherto
transcription factor identification has been largely
based on genome annotation pipelines that use
pairwise sequence comparisons, which detect only
those factors similar to known genes, or on func-
tional classification schemes that amalgamate
many types of proteins into the category of ‘trans-
cription factor’. Using a novel transcription factor
identification method, the DBD transcription factor
database fills this void, providing genome-wide
transcription factor predictions for organisms from
across the tree of life. The prediction method behind
DBD identifies sequence-specific DNA-binding tran-
scription factors through homology using profile
hidden Markov models (HMMs) of domains. Thus, it
is limited to factors that are homologus to those
HMMs. The collection of HMMs is taken from two
existing databases (Pfam and SUPERFAMILY), and
is limited to models that exclusively detect transcrip-
tion factors that specifically recognize DNA
sequences. Itdoesnot includebasal transcription fac-
tors or chromatin-associated proteins, for instance.
Based on comparison with experimentally verified
annotation, the prediction procedure is between 95
and 99% accurate. Between one quarter and one-
half of our genome-wide predicted transcription
factors represent previously uncharacterized pro-
teins. The DBD (www.transcriptionfactor.org) con-
sists of predicted transcription factor repertoires for
150 completely sequenced genomes, their domain
assignmentsandthehandcurated listofDNA-binding
domainHMMs.Userscanbrowse,searchordownload
the predictions by genome, domain family or

sequence identifier, view families of transcription
factors based on domain architecture and receive
predictions for a protein sequence.

INTRODUCTION

The essence of any organism is the spatial and temporal
expression pattern of its gene repertoire. While the genome
provides the template, it is the way genes are expressed that
defines the organism. Consequently, regulation of gene
expression influences almost all biological processes in an
organism.

Transcription factors (TFs) are often termed themaster regu-
lators of gene expression. By binding to the DNA,
they tightly control where and when the nearby target gene
is expressed. Despite their importance as a fundamental com-
ponent of biological systems for all organisms across the tree of
life, the transcription factor repertoires for many genomes
remain largely uncharted. Hitherto transcription factor identi-
fication has been largely based on genome annotation pipelines
that use pairwise sequence comparisons (1), which detect only
those factors similar to known genes, or on functional classi-
fication schemes that amalgamate many types of proteins into
the category of ‘transcription factor’ (2). Using a novel tran-
scription factor identification method, our online resources,
the DBD transcription factor database provides transcription
factor predictions for all completely sequenced genomes.

Databases of transcription factors to date have focused on
single or small groups of genomes. They are largely based on
manual literature curation, pairwise sequence comparison and
functional classification schemes. Genome specific resources
include: RegulonDB for Escherichia coli K-12 (1), DBTBS for
Bacillus subtilis (3), FlyBase (providing TF as well as other
annotation) for Drosophila (4), TFdb for mouse (5) and
TRANSFAC for eukaryotes (6). RegulonDB and DBTBS
are databases of transcription factors and their target genes
for their respective genomes (E.coli K-12 and B.subtilis).
DBTBS also provides information about the Pfam domains,
but this is purely extra information and is not used for pre-
diction. FlyBase is a more general resource forDrosophila that
compiles information from the fly genome projects and liter-

*To whom correspondence should be addressed. Tel: +44 1223 402479; Fax: +44 1223 213556; Email: skk@mrc-lmb.cam.ac.uk

� The Author 2006. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press
are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but
only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org

D74–D81 Nucleic Acids Research, 2006, Vol. 34, Database issue
doi:10.1093/nar/gkj131



ature curated annotation, including listings of known tran-
scription factors. TFdb is a database of mouse transcription
factors. It is built by: selecting proteins annotated by Gene
Ontology (GO) as transcription factors, manual curation and
addition of close homologs using pairwise sequence compar-
ison. The manual curation involves addition of known TFs that
are missed by GO and removal of those that seem to be
erroneously classified by GO. Similarly, TRANSFAC (6)
is list of eukaryotic transcription factors based on manual
literature curation.

Others have made use of these resources to compile their
own lists, for example, Messina et al. (7) used TRANSFAC
together with GO annotation of UniProt and FlyBase to seed
sequence and hidden Markov models (HMMs) searches, fol-
lowed by manual curation, to identify human factors. Their
aim was to produce a rough list of factors as a starting point
for array experiments across species. Because the experiments
were large-scale surveys, the study favoured over- rather
than under-prediction. Only blatant errors, for instance DNA
or RNA polymerases were manually removed. This liberal
approach to false positives meant that the final set included
a range of proteins that are not sequence-specific DNA-
binding transcription factors. Another study by Riechmann
et al. (8) used curated lists of factors in combination with
BLAST sequence searches to identify the transcription factors
in four eukaryotes: Arabidopsis, Drosophila, Caenorhabditis
elegans and Saccharomyces cerevisiae.

A slightly different approach was taken by Iyer et al. (9).
They used the multiple sequence comparison tool PSI-
BLAST, seeded with known viral regulatory proteins, to
identify viral transcription factors. Ravasi et al. (10) also
used multiple sequence comparisons, focusing on zinc finger
transcription factors in mouse. Computational studies of tran-
scriptional regulation have used domain assignments in an ad
hoc (uncalibrated) way to identify transcription factor proteins
for particular groups of genomes (11,12). Finally, TrsDB (13)
use position specific scoring matrices describing DNA-binding
motifs to identify and classify transcription factors for nine
eukaryotic genomes.

All of these resources list transcription factors for an indi-
vidual or small group of organisms. Their underlying approach
is identification by literature review, which means the proteins
identified must be known (and published) factors. For most of
the datasets the only scope for inclusion of uncharacterized
transcription factors is via pairwise sequence searches, capable
of identifying close homologs. Some resources also use func-
tional classification schemes; however, these are firstly prone
to error (due to inclusion of regulatory but non-DNA-binding
factors) and secondly, they too are produced by literature
review and pairwise sequence search. These methods are
not comprehensive with respect to either the genomes they
cover, transcription factor families included or both.

A second group of resources include compilations and pre-
dictions of transcription factor binding sites: e.g. MATCH
(14), JASPAR (15) and MAPPER (16). While these tools
are not directly comparable to our database, they are comple-
mentary, providing information about the DNA sequences
that transcription factors recognize.

The prediction method described here is applicable to all
genomes across the tree of life. It has been quantitatively
evaluated and is capable of accurately identifying both

known and previously uncharacterized transcription factors
that bind specifically to DNA. Even TFs with no obvious
sequence homology to known factors may be identified.

The prediction method behind DBD identifies sequence-
specific DNA-binding transcription factors through homology
using profile HMMs of domains. The collection of HMMs is
taken from two existing databases (Pfam and SUPERFAM-
ILY), and is limited to models that exclusively detect tran-
scription factors that specifically recognize DNA sequences. It
does not include basal transcription factors or chromatin-
associated proteins, for instance. Based on comparison with
experimentally verified annotation, the prediction procedure is
between 95 and 99% accurate. Between one-quarter and one-
half of the genome-wide predictions represent previously
uncharacterized proteins.

At present, DBD consists of predicted transcription factor
repertoires for more than 150 completely sequenced genomes
(to be periodically updated), their domain assignments and the
hand-curated list of DNA-binding domain HMMs. Users can
browse predictions by genome or domain family, search using
sequence identifiers and view TF domain architectures. Pro-
tein sequences can be submitted for automatic prediction and
all transcription factors lists are available for download
grouped by genome.

The potential applications of predictions are broad ranging,
from single protein tomulti-genome studies.We expect that the
main use of our database will be for prediction of transcription
factor repertoires for particular genomes. The predictions also
provide the starting point for use in high-throughput experi-
ments that characterize the nature of regulation. For example,
measuring characteristics of genes such as expression levels
across different tissues or identifying DNA-binding sites.
Examples of large-scale experiments that have used TF
repertoires as a starting point are studies by Messina et al.
(7). They used microarrays to investigate expression patterns
of human transcription factors. Two recent analyses carried out
large-scale ChIP-chip experiments of S.cerevisiae transcrip-
tion factors with the aim of identifying transcription factor
target genes (17,18). Our predictions may also be of interest
to theoretical biologists and are already being used for com-
parative genomics studies in fungi and insects.

We begin with a detailed explanation of the transcription
factor prediction procedure and rationale for its design. The
second section discusses a series of tests that were used to
evaluate the performance of the method. Finally, we describe
the web interface and explore the biological significance of
this information.

PREDICTION METHOD

Transcription factors regulate gene expression by binding to
DNA near their target genes. Some are sequence-specific,
recognizing only particular DNA sequences, while others
are basal, binding to a more general promoter (e.g. TATA
box or initiator sequence). Here we are concerned only
with the sequence-specific DNA-binding transcription factors,
because these proteins are important for differential regulation
of gene expression. To function as a sequence-specific DNA-
binding transcription factor, a protein must contain a domain
that binds to DNA in a sequence-specific manner. We exploit
this requirement in order to identify transcription factors.
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Our approach uses protein structure (through domains) and
remote homology recognition, to accurately, and sensitively
identify transcription factors. It can be automatically applied
to any genome to identify both known and previously unchar-
acterized factors.

We use profile HMMs from the SUPERFAMILY (19) and
Pfam (20) databases to identify proteins that contain sequence-
specific DNA-binding domains. The advantage of transcrip-
tion factor prediction based on HMMs of DNA-binding
domains is two-fold. First, it is more sensitive than conven-
tional genome annotation procedures, because it uses the
powerful multiple sequence comparison method of HMMs.
Secondly, it recognizes only transcription factors that use
the mechanism of sequence-specific DNA binding, as opposed
to functional classification schemes that amalgamate many
types of proteins into the category of transcription factor
(e.g. co-activators or co-repressors and chromatin modifica-
tion enzymes).

The two HMM libraries that we use, SUPERFAMILY and
Pfam, both represent domains, but they differ in their method
of construction and definition of domains. Briefly, SUPER-
FAMILY contains HMMs of domains of known three-
dimensional structure based on the domain definitions of
the Structural Classification Of Proteins (SCOP) database
(21). Each SCOP domain is used as a seed to build a
model representing its family. In most cases, one SCOP super-
family is represented by a set of models that each recognize a
subset of superfamily members.

In contrast, the Pfam HMMs are built from hand-curated
multiple sequence alignments. Groups of sequences are iden-
tified by manual literature review as belonging to the same
family, they are aligned and used as the seed for an HMM. This
model is used to search a large sequence database in order to
detect more distant or poorly characterized family members.
The newly detected sequences are included in a second align-
ment which is used to build a final, broader HMM representing
the family.

The variation in domain definition and method of construc-
tion means that Pfam and SUPERFAMILY differ in their
coverage. By including both databases in our prediction
method, we improve the overall prediction rate as compared
to using either database alone. The DBD website indicates the
number of transcription factors identified using each database
and the TF domain architectures.

We manually inspected all 2537 SCOP (version 1.61) and
7677 Pfam (version 16.0) families, and identified 110 and
141, respectively, that represent sequence-specific DNA-
binding domains. From this annotation, we selected the
HMMs that represent these families from the SUPERFAMILY
and Pfam databases. For Pfam, selection of relevant models
was straight-forward because each family corresponds to an
HMM, and these models are specifically designed to recognize
only members of the family.

For SUPERFAMILY, model selection is less straight-
forward because SUPERFAMILY models are designed to
identify members within a SCOP superfamily rather than a
SCOP family. The superfamily level includes highly divergent
members that often span different functions. For example,
the Putative DNA-binding domain superfamily is made
up of five families that are involved in: RNA-binding,
general (non-sequence-specific) DNA-binding as well as

sequence-specific DNA-binding transcription factors. For
this reason, our manual curation considered SCOP families
rather than superfamilies.

To overcome this problem, we selected models that were
seeded by proteins classified in the SCOP database as
sequence-specific DNA-binding and assessed their potential
to match non-DNA-binding domains using a SCOP all-
against-all test. This test involves scoring the seed sequences
against the models. For example, in the case of the Putative
DNA-binding domain superfamily all SCOP sequences were
searched against the HMMs. In two cases, one of the DNA-
binding family models gave a significant match (or cross-hit)
to a non-DNA-binding sequence. To ensure accurate
identification of sequence-specific DNA-binding transcription
factors, we excluded the cross-hitting models. In total
13 models representing 12 families and 5 superfamilies were
excluded (Supplementary Table 1).

Separate from these cross-hits, there are a small number of
families where the overwhelming majority of members are
sequence-specific DNA-binding domains, but some represent-
atives have other functions (possibly in addition to their
DNA-binding role). For example, C2H2 zinc fingers may
bind RNA rather than DNA and proteins containing a zinc
finger domain carry out multiple functions (including but not
exclusively sequence-specific transcription regulation) (10). In
these rare cases, we include the domain (and its HMM) and
accept that this may generate a small number of false positives.

This process allowed selection of 141 Pfam and 210
SUPERFAMILY models (110 families) representing
sequence-specific DNA-binding domains. To make a predic-
tion as to whether a protein is a transcription factor, we search
the amino acid sequence against the HMM libraries and
designate the protein to be a transcription factor if it has a
significant match to a model we annotated as representing
a sequence-specific DNA-binding domain. This procedure is
illustrated in Figure 1. Note that only transcription factors
from these families will be detected. Characterized TFs that
are not recognized by the HMMs are not automatically
included.

EVALUATION

To evaluate the accuracy of the prediction process, we carried
out a series of tests on groups of sequences that had been
experimentally annotated as transcription factors. The first
test considers only proteins of known structure in order to
check our annotation of SCOP domains. The second test
considers the largest available set of 1.5 million proteins
including sequences from across the tree of life, providing
a large-scale assessment of the HMM-based prediction in
order to determine our accuracy and coverage statistics.
The final set of tests focuses on individual genomes, evaluat-
ing performance in comparison to manually curated lists of
factors. As discussed above, the primary use of our database is
expected to be for prediction of transcription factor repertoires
for individual organisms. This final test is designed to directly
assess our performance on whole genomes, allowing users to
ascertain the level of confidence they should expect for rep-
ertoire predictions.

The aim of the first test was to assess the accuracy of the
underlying approach (that is, transcription factor identification
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via manual inspection of SCOP), without adding the complex-
ity of domain prediction. The sequence set was from the PDB
(22), including only proteins of known structure with curated
domain composition from SCOP. By including only proteins

with known domain composition, we eliminated any potential
error introduced by incorrect assignments by the HMMs.

We used the GO annotation (2) of the PDB proteins as a
standard list of known TFs. The GO functional classes that
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Figure 1. Transcription factor prediction procedure.We beginwith a set of proteins, shown as horizontal lines. For example, the initial set of proteinsmay be awhole
proteome. Each sequence is searched against the SUPERFAMILY and Pfam HMM libraries. A domain is assigned to a particular protein when one of the HMMs
matches a region of sequence with an E-value less than or equal to 0.001 for SUPERFAMILY or greater than or equal to the trusted cutoff for PFAM. Assigned
domains are shown as coloured boxes where the colour indicates the family. For example, the small dark-blue boxes represent the Zinc finger C2H2 type DNA-
binding domains. Proteinswith at least oneDNA-binding domain assigned are selected as putative transcription factors. The designation of DNA-binding is based on
our manual curation of Pfam and SUPERFAMILY models.
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represent the transcription factors are shown in Table 1 (Sup-
plementary Table 2 provides a comprehensive list, including
categories we classified as expression related). It should be
noted here that when we manually inspected proteins classified
by GO as transcription factors, we found that the set also
includes some basal (i.e. non-sequence-specific) factors and
chromatin remodelling proteins.

When we examined PDB proteins identified by us as con-
taining a sequence-specific DNA-binding domain, we found
that more than 99% (393) are classified by GO as TFs. The
remaining 1% (4) are classified by GO as nucleic acid binding
and have not been allocated to a GO sub-category (Details are
shown in Table 2). This test illustrates the validity of both the
underlying approach, prediction based on structural domains,
and our hand curation of the SCOP domains.

Next, we aimed to evaluate the prediction method as a
whole, including the domain assignment step using SUPER-
FAMILY and Pfam. The sequence set used was from the
UniProt database (23), the most comprehensive catalogue of
proteins available including more than 1.5 million sequences.
As a standard for comparison, we used the experimentally
verified GO annotation for UniProt (that is we excluded
homology based annotation). We searched the Pfam and
SUPERFAMILY HMMs against the UniProt sequence set
to derive a set of predicted transcription factors. In order to
evaluate the accuracy of our method, we calculated the number
of predicted TFs for which GO supported our prediction. That
is, GO annotated the protein as being a member of one of the
categories shown in Supplementary Table 2. This benchmark
established our accuracy to be between 95 and 99% (Table 3).
This means that we expect 5 out of 100 of our predictions
to be incorrect. Manual inspection and literature search of
the false positives suggests that at least one-half are in

fact experimentally verified sequence-specific DNA-binding
proteins. Many of the remaining putative false positives
have little annotation, but any provided is supportive of
the suggestion that these proteins are transcription factors.
Therefore, a 5% error rate should be considered an upper
bound.

Conversely, we calculated the coverage of our method to be
between 60 and 67% by counting the number of proteins that
GO annotates as a transcription factor but we fail to predict.
This suggests that we miss around one-third of transcription
factors. Closer inspection of these proteins showed that many
are not actually sequence-specific DNA-binding TFs, but are
involved in some other expression related process (e.g. basal
transcription factors and chromatin proteins). This means that
the false negative rate of one-third should be considered an
upper bound. We expect to miss some TFs because we rely on
HMM domain assignments which are known to give incom-
plete coverage [depending on the genome, between 30 and
60% of amino acids lack a domain assignment (19,20)]. Closer
inspection of the 358 known TFs that we categorized as
carrying out some other (non-expression related) function
indicates that limitations in the homology detection are likely
to be to blame; more than 60% of this set have no domain
assignments at all.

At the same time, it must be noted that our predictions
encompass as many transcription factors again that are unclas-
sified in GO (37840 novel compared to 20246 known TFs) and
these additional predictions are expected to be at least 95%
accurate (Table 3). Therefore, despite the incomplete cover-
age, our method predicts many transcription factors that are
unannotated.

Table 1. Sequence-specific DNA-binding transcription factor GO categories

Accession no. Description

GO:0003700 Transcription factor activity
GO:0003702 RNA polymerase II transcription factor activity
GO:0003709 RNA polymerase III transcription factor activity
GO:0016563 Transcriptional activator activity
GO:0016564 Transcriptional repressor activity

These five categories are from the molecular function ontology and have been
selected because they include sequence-specific DNA-binding transcription
factors. We use these categories to evaluate our predictions.

Table 2. GO annotation of our predictions for PDB proteins

GO annotation Number of proteins

Annotated as TF 393
Expression related 4
Other function 0
Unclassified 88

To evaluate the prediction method for proteins with known three-dimensional
structures, we compared our results with the experimentally derived GO
annotation of the PDB database. The first column of numbers indicates
the GO annotation of proteins in our predicted TF set. 99% of predictions are
corroborated by GO. (Annotated as TF based on experimentation rather than
homology inGO.)The remaining1%are classified asnucleic acid binding. This
means they may be transcription factors, but there is insufficient functional
annotation to make a sub-categorisation.

Table 3. UniProt benchmark

Accuracy:
Our TF list as
annotated by GO

Coverage:
GO annotated TFs
as annotated by us

Full GO annotation
Annotated as TF 20 246 20 246
Expression related 44 2414
Other function 2 3698
Unclassified 8774 987
Absent from GO or no
domain assigned

29 066 2632

Experimentally derived GO annotation
Annotated as TF 1010 1010
Expression related 27 88
Other function 22 168
Unclassified 1226 98
Absent from GO or no
domain assigned

35 451 314

To evaluate the prediction method, we compared our predictions with the
experimentally derivedGOannotationof theUniProtdatabase.The first column
of numbers indicates the GO annotation of proteins in our predicted TF set.
99.8% of predictions are corroborated GO (annotated as TF), giving a false
positive rate of 0.2% (Expression related and other function). Based on only
experimentally derivedannotation, 95%ofpredictions arevalidatedbyGO.The
final column is our annotation of all the proteins GO annotates as transcription
factors. Proteins with domains of unknown function are counted in the ‘unclas-
sified row’. This shows that we identify 67% of known transcription factors, or
conversely, we miss about one third. Manual inspection suggests that some of
the missed proteins may in fact be basal factors and therefore have been cor-
rectly excluded from our set. It should also be pointed out that we predict
37840 transcription factors that are not classified or of unknown function
according to GO.
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The final group of tests involved comparison with curated
lists of transcription factors for individual genomes. First, we
considered S.cerevisiae, using a list of 160 factors curated
from literature by Luscombe et al. (24) as our standard. In
total we predicted 169 transcription factors: 125 (74%) of
these were known, 5 (3%) seemed to be false positives and
39 (23%) were novel, previously unannotated proteins. For the
160 known transcription factors, we correctly predicted 78%
(125). We failed to predict the remaining 22% (35). Of these,
one-half had no domain assignments and the remaining
one-half had some domains assigned but no DNA-binding
domain. These results confirm that our annotation provides
good coverage (78%).

A second manual analysis of predicted transcription factors
for the mouse genome identified an even higher proportion of
proteins of unknown function. Shown in Table 4, our method
identifies more than 600 currently unannoted proteins as being
TFs. This corresponds to a 90% increase in the known
mouse TF repertoire.

These examples illustrates the power of our method for
identifying previously uncharacterized transcription factors.
Almost one-quarter of our predictions were for uncharacter-
ized proteins. Assuming the same false-positive rate as for the
known factors, this means we have identified 590 new mouse

transcription factors, increasing the size of the repertoire by
more than 90%.

In summary, we have developed an automatic, broadly
applicable method for predicting sequence-specific DNA-
binding transcription factors. Based on an evaluation using
a large set of annotated protein sequences, we find that it is
accurate (95 to 99% correct) and has good coverage (between
60 and 78% identification rate). Most importantly, many
previously unannotated transcription factors are reliably
predicted.

Table 4. Functional annotation of predicted mouse transcription factors

Annotation for predicted TFs in mouse Genes % Mouse TF
predictions

Known transcription factor 671 39
Transcription factor homolog 51 3
Previously known to contain a DBD 360 21
Other function 10 0.6
Unknown function 608 36

90% increase over the known factors.

Annotationwas taken from theMGD(27).Our predictionmethod identifies 608
genes of unknown function as transcription factors. This amounts tomore than a

Figure 2. DBD: Yeast predictions screen-shot. Each predicted transcription factor is listed with two rows for the SUPERFAMILY and PFAMdomain architectures.
Domains are represented as rectangles, coloured according to their family and horizontally located based on their position in the amino acid sequence. Clicking on a
domain takes the user directly to that family in the relevant domain database. Proteins are ordered based on their domain architecture. For ease of navigation (in
particular for large genomes), the list of transcription factors is split into pages with 50 entries per page by default. Users can navigate between pages using previous/
next or clicking on a page number.
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THE DATABASE: DBD

The transcription factor prediction method described above is
broadly applicable to any genome or sequence set. As we have
shown, the results are both reliable and have good coverage.
This means that by applying the method to complete genomes,
it is possible to predict transcription factor repertoires for
organisms. This type of information is invaluable to both
bioinformaticians and biologists interested in gene regulation
or expression.

In order to make our method accessible to the
scientific community, we have developed an online database
(www.transcriptionfactor.org) with pre-computed predictions
for more than 150 completely sequenced genomes. Users
can: browse predictions by genome or DNA-binding
domain, search for particular sequence identifiers or domains
and submit their own amino acid sequence for prediction.
The web interface also allows users to download the
domain assignments and list of DNA-binding domain
HMMs as text files. The SUPERFAMILY and Pfam annota-
tion as well as predictions for all genomes are available as
text files.

Figure 2 shows part of the result page for S.cerevisiae.
SUPERFAMILY and Pfam domain architectures are illus-
trated for each transcription factor, with colour indicating
the domain family. Users can click on a domain to link directly
to the relevant domain database.

Examples of the number of transcription factors we identify
across eukaryotic genomes is shown in Table 5. The propor-
tion of proteins that are transcription factors increases from
fungi to insects to mammals. That is, between 2.6 and 3.9% of
the unicellular eukaryotes’ proteins are transcription factors
compared to 5% for fly and almost 10% for mouse and human.
Figure 3 shows the number of transcription factors in each
genome compared to their total number of genes. This expo-
nential increase in transcriptional regulatory proteins com-
pared to genome size has been observed previously, based
on GO functional categories, for bacteria (25) and genomes
across all three kingdoms of life (26).

CONCLUSION

We have developed a broadly applicable method for automat-
ically predicting sequence-specific DNA-binding transcription
factors. The procedure uses HMMs from the SUPERFAMILY
and Pfam databases to identify proteins that contain sequence-
specific DNA-binding domains. A thorough evaluation
showed that the method is both accurate (95 to 99% correct)
and has good coverage (between 60 and 78% of known factors
were identified). However, the most exciting feature of our
method is that we also predict many novel, unannotated
transcription factors. For example for mouse we find over
600 new factors amounting to more than a 90% increase in
the TF repertoire.

We have applied our prediction method to more than
150 completely sequenced genomes from across the three
kingdoms of life and implemented a web interface to make
the data publicly accessible.

While the method described here represents a significant
advance in the field of transcription factor prediction, adapting
our system to use profile-profile methods (rather than profile-
sequence) for remote homology detection is almost certain to
increase sensitivity and coverage. Aside from generally improv-
ing domain assignments, profile-profile comparison could be
used to make direct family level assignments for SCOP.

Until now, any researcher hoping to study transcriptional
regulation would need to devise a list of putative factors for
consideration. This database provides the first quantitatively
evaluated transcription factor prediction set for all completely
sequenced genomes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

Table 5. Transcription factor predictions in eukaryotes

Genome Genome
size

Transcription
factors

% of
proteins

Mus musculus 15.30 32 911 3240 9.8
Homo sapiens 15.33 32 035 3022 9.4
Drosophila melanogaster 3.1 18 484 936 5.0
Fusarium graminearum 1 11 640 453 3.9
Candida glabrata 5271 187 3.5
Candida albicans 6165 208 3.4
Kluyveromyces lactis 5331 176 3.3
Debaromyces hansenii 6869 230 3.3
Ashbya gossypii 1.0 4726 155 3.3
Saccharomyces cerevisiae 6356 201 3.2
Yarrowia lipolytica 6659 198 3.0
Kluyveromyces waltii 5214 155 3.0
Schizosaccharomyces pombe 5005 132 2.6

Genome size and number of predicted transcription factors are indicated for
thirteen eukaryotes including 10 unicellular fungi and three multicellular
animals. Splice variants are included in these counts. Organisms have been
arranged according to the percentage of their proteins that are transcription
factors. The unicellular fungi have been shaded in grey.
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Figure 3. Number of genes in each of 151 genomes versus transcription factor
predictions. The Number of genes (x-axis, log-scale) is plotted against
the number of predicted transcription factors (y-axis, log-scale). Each splice
variant is counted independently. (See database website for a list of genomes
considered.)
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